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We consider a model correlated percolative system on a 2D square lattice with 
a finite electric field applied accross its two opposite sides. We study the shape 
of the clusters formed with the addition of a new kind of bond (we call them 
tunneling bonds) which respond only above a finite threshold voltage. As 
expected, the clusters do have an overall elongated shape in the direction of the 
applied field. Intuitively, one expects the elongation (with the aspect ratio > 1 ) 
to increase indefinitely with the field. But, in a previous study, we found the 
model to belong to the same universality class in the limits of a zero and an 
infinite electric field. We explain this behavior by studying the change in these 
elongated shapes as a function of the applied voltage in finite size samples and 
find that actually the amount of elongation takes on a maximum value at a size 
(L)-dependent finite voltage V,,,(L) and that as V--* o~ the overall deviation 
from isotropy in the field direction tends to zero (i.e., aspect ratio --* 1 ) again. 

KEY WORDS: Ohmic bonds; tunneling bonds; correlated percolation, shape 
factor; random-resistor network; universality. 

P e r c o l a t i o n  m o d e l s  (t) s tudied  so far have  been  qui te  successful to expla in  

the b e h a v i o r  o f  a var ie ty  o f  phys ica l  systems. We  shall  cons ider  here  a 

m o d e l  co r re l a t ed  b o n d  pe rco l a t i on  p r o b l e m  on  a 2 D  square  lattice. This  
has  a l ready  been  i n t roduced  t2'3) to  u n d e r s t a n d  the essential  features 

ob t a ined  f rom s o m e  recent  s tudies o f  the  non l inea r i ty  assoc ia ted  wi th  the  

response  to  electr ic  field (see, e.g., ref. 2 and  references there in)  in some  
b inary  compos i t e s  and  seems to be app l icab le  in s imilar  s i tua t ions  to m a n y  

o the r  systems,  e.g., a m o r p h o u s  s e m i c o n d u c t o r s  in h igh  fields and  b io log ica l  

systems such as l ipid bilayers.  
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The model is as follows. We throw some conducting bonds (which are 
Ohmic and hence referred to as o-bonds from now on) randomly on a 
square lattice with a volume fraction p. The rest of the bonds with a frac- 
tion (I - p )  are insulating bonds. Let us call the horizontal direction the x 
direction and the vertical direction the y direction. Now we assume that 
with the application of appropriate electric fields (voltage) in the y direc- 
tion, the electrons may tunnel through the gaps between two nearest 
neighbor (for simplicity) o-bonds. The bonds across these gaps are typically 
nonlinear (non-Ohmic). In this simple model we consider those bonds to 
be piecewise linear, i.e., they remain insulator up to some fixed threshold 
voltage (which is assumed, again for simplicity, to be the same for all such 
bonds) and then start conducting with some nonzero conductance which 
need not be equal to that of the o-bonds, but may be kept the same 
without changing the essential physics we are going to describe. We call 
such nonlinear bonds "tunneling bonds" ("t-bonds"). Once the conducting 
bonds are thrown, the positions for the t-bonds are fixed and they are 
correlated to the positions of the randomly thrown o-bonds. That is why 
one may view this model as a specific correlated bond percolation problem. 

Clearly, in the absence of an electric field, none of the t-bonds would 
be conducting (i.e., be active) and the problem reduces to the usual 
geometrical percolation problem. Now as one switches on an external elec- 
tric field (with a potential difference of V volts) across the two parallel elec- 
trodes on opposite sides of the system (in the y direction), some of the 
t-bonds may be able to overcome their threshold and start conducting. 
With increasing It, more and more t-bonds will join in this process. Finally, 
for V---, oo all the t-bonds would be conducting. Obviously, in the percola- 
tion picture, the system would now have a threshold at a much lower value 
o fp  (we call it Pc,) compared to the geometrical percolation threshold (Pc) 
in the absence of such "active" t-bonds (i.e., for V=0) .  But, more impor- 
tantly, with the application of a finite voltage in the y direction, an addi- 
tional number of current-carrying paths may be formed because of the 
active t-bonds which were previously absent. Let us consider a volume 
fraction p of the o-bonds, P c , < P  <Pc .  The paths formed would be, as 
intuitively expected, directed from one electrode to the other. Since no elec- 
tric field exists in the x direction, the spanning cluster would naturally be 
elongated towards the electrodes (i.e., in the y direction). Intuitively one 
expects this elongation to be more and more pronounced as the magnitude 
of V increases, and hence for large-length systems the conducting paths are 
expected to be quasi one dimensional as I VI--, ~ .  This in turn should 
imply that the characteristic signature of the percolation (i.e., its univer- 
sality class) for our model should change as V is turned on, and par- 
ticularly as the applied field approaches infinity. But our previous studies t41 
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indicate that in both of the limits of a vanishing electric field and of an 
infinite electric field, the system belongs to the same universality class. 

In this short communication, our concern is to find out how such an 
interesting thing takes place. To do that, we consider a more general situa- 
tion where only a fraction of the available t-bonds (out of all the possible 
tunneling positions) are active. This is the situation when the applied volt- 
age V is finite. We always consider the system above Pc, (~0.181 as 
estimated in ref. 4) so that the system may always have the possibility of 
conducting current with the addition of active t-bonds for some finite V. 
One may look at the problem in a different way. Let us note that each ran- 
domly thrown o-bond occupies two sites of the lattice. Once we identify 
these equivalent occupied sites, the problem reduces to an equivalent site- 
percolation problem and we check (for our computational purposes only) 
if there is any spanning cluster made of the occupied sites. From now on 
we refer to this cluster as the site-spanning cluster (SSC). It may be noted 
that in this equivalent site-percolation problem, we still cannot forget 
about the bonds, since we have to remember if the resistance between two 
nearest neighbor sites is infinite (insulating) or is finite (i.e., has an o- or 
an active t-bond). Thus the mere presence of an SSC does not imply that 
the system would percolate (again one sees the presence of correlation). 
The advantage in looking for an SSC lies in the fact that we need not spend 
time calculating the conductance when it is absent (it turns out that these 
are the configurations which spend most of the time iterating and yet not 
give any sensible results, for obvious reasons). Further, when an SSC 
exists, we may not be interested in all the other smaller clusters (discon- 
nected from the SSC) for the calculation of the conductance because they 
would not contribute to the current-carrying network in our model system. 
Later, from the computer simulation also, we see that those isolated 
smaller clusters do not have active t-bonds which we would like to count. 
But for a finiXe voltage, there are smaller isolated clusters (in the original 
bond picture) within the SSC apart from a possible spanning cluster using 
only the o-bonds and the active t-bonds. The computer simulation finds 
that these smaller (nonspanning) clusters which are subsets of the SSC also 
possess active t-bonds. The possibility of having active t-bonds in these 
cases arises because for the purpose of facilitating the random-resistor 
network calculation we assigned the insulating bonds an extremely small 
conductance of ]0 -5~ and hence an extremely large resistance of 10 +5~ 
The algorithm used here is of Hoshen-Kopelman type (see, e.g., ref. 1). 

To have a quantitative estimate of the shape of the clusters, we may 
count the number of bonds parallel and perpendicular to the electrodes for 
all the clusters now formed. Each current-carrying path consists of vertical 
(y) and horizontal (x) bonds and naturally, the vertical bonds are larger 
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in number  compared to the horizontal bonds. However,  inside the SSC, the 
numbers of  o-bonds in the x and the y directions are equal on average. 
So for our purpose it is just enough to count  the active t-bonds at a par- 
ticular V in all the clusters (within the SSC). The configurations which do 
not contain an SSC are assigned a conductance of  zero without any further 
computation. In case an SSC exists for a certain configuration, we solve 
Kirchhoff 's law at each node of  the corresponding random-resistor 
network subject to a fLxed V and use the s tandard Gauss-Seidel relaxation 
technique to identify the active t-bonds inside it. As described before, the 
computer  simulation gives numerous active t-bonds (within the SSC, but 
not  outside of  it) which do not  belong to the current-carrying network. We 
actually count all of  them. Eventually (as we go on increasing the applied 
voltage) all the nearest neighbor t bonds become part  of  the current-carry- 
ing network. Let us suppose that n .  is the number  of  the active t-bonds 
perpendicular to the electrodes and nLi is the number  of  those in the 
parallel direction. We define a configuration-dependent shape factor 
Z = ( n . - -  nl l ) / (n  • + nil) and calculate Z at different V for various system 
sizes from L = 10 to 80 and take averages over 100-500 configurations each 
time. The plot of  (X)  against V is shown in Fig. 1 for different system sizes 
and for different values of  p as indicated in the figure. For  a fixed L the 
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Fig. I. Plot of the average "shape factor" (g)  against applied voltage V. The curves are for 
different volume fractions p of the conducting bonds thrown and system sizes L as indicated 
in the figure. 
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peak in the curves appears at the same position (i.e., at the same V, which 
we call V,,) for any p. The shape factor (;(> is always positive (i.e., 
n j_ > nil ) which indicates that the effective spanning cluster actually has an 
elongated shape on average. The peak signifies that the clusters would be 
maximally elongated at that particular applied voltage V,, corresponding 
to that finite system size L. We observe that this peak position Vm increases 
linearly with the system size as may be expected intuitively. For example, 
we find that V,, = 8 V for L = 20, and that V,,, = 16 V for L = 40. 

As one increases V beyond V,,, more parallel than perpendicular 
t-bonds become active and finally for V---, oo all the t-bonds becomes active 
(in the sense that they can overcome their threshold). In that limit (Z )  ~ 0 
as the t-bonds at any specified position (within the SSC) would be active, 
and hence nj_=nll on the assumption that the probability of parallel 
t-bonds is identical to that for perpendicular ones. Now one may ask at 
which fraction f defined as (no. of active t-bonds)/(no, of all possible 
t-bonds) in the SSC do the peaks in (;(> appear. Again this fraction is con- 
figuration dependent. We call the peak in (X> as Z,,, and the corresponding 
average fraction ( f >  as (f,,,>. In Fig. 2, we plot ( f , ,> against p for dif- 
ferent system sizes as indicated in the figure. We find that the peak X,, 
occurs around ( f , , , )=0 .50 ,  i.e., when 50% of the tunneling positions are 
filled up on average. This fraction (f,,,> seems to be independent of system 

Fig. 2. 

A 
E 

v 

1.0 

0 .8  

0 .6  

0 .4  

0.2 

o L =  20 

a L =  30  

0 L = 40  

___8 0 0 
8 o o 

rl 

o 

OL)  0 I I i I I I t I I I I I P I I I I I I I I t 
0 . .  ' . . . . . .  .13'' 0 . 5  0 . 7  

P 
Plot of (f,,,> against p. Here f is the fraction of tunneling bonds which are above 

their threshold voltage (i.e., are active) out of all possible tunneling positions. 
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Plot of maximum value of <Z) (indicated in the figure as Z.,) against p. The curves 

for three different system sizes fall on each other. 

size L but weakly dependent on p. Finally, we find that  the m a x i m u m  value 
of the shape factor on average is also independent of  the size, but depends 
on the volume fraction p. We have show this in Fig. 3 by plotting X,,, 
against p for three different system sizes. The curves for different sizes seem 
to fall on each other for p > 0.4. Mismatch at lower p 's  seems to be due to 
stronger finite-size effects. 

In conclusion, then, we find that  the overall orientation of the clusters 
formed at any finite voltage for our  model  percolation system is always direc- 
ted along the applied field, i.e., the clusters have aspect ratios greater  than 
unity. A finite voltage here implies that  not all the tunneling bonds (at the 
correlated positions) are active. We find that the elongation as defined above 
through the parameter  <Z)  is m a x i m u m  for finite-size systems at a finite 
voltage V,,, and that  it tends to zero (i.e., the aspect ratios tend to unity) 
both  for vanishing and infinite voltages. This is consistent with our univer- 
sality class studies (4) in these two limits. The max imum elongated clusters 
along the applied field occur when on average approximate ly  half  of  all the 
possible tunneling positions are active. The elongation in a finite field raises 
the interesting possibility that  the system may  not be in the same universality 
class as that  for pure geometric percolat ion in the absence of any tunneling 
bonds. Work  in this direction is in progress. In passing, we note that  this 
problem has some similarity to the electric breakdown problem in the 
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sense that it is somewhat the reverse of what we are doing here. For  details 
the reader is referred to Benguigui and Ron, (5~ who identify the breakdown 
paths and also the other broken elements (not  belonging to the breakdown 
paths) in a network of resistors and light-emitting diodes (LED) which can 
mimic an insulating element having a property similar to that of the 
t-bonds we consider. Several figures obtained by computer  simulation given 
in ref. 5 are very instructive in this respect. 
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